INCREASED HETEROGENEITY IN THE SUBFIELD MAPS OF MULTIPLE NEARBY V2 NEURONS IN AMBLYOPIC MONKEYS

Title INCREASED HETEROGENEITY IN THE SUBFIELD MAPS OF MULTIPLE NEARBY V2 NEURONS IN AMBLYOPIC MONKEYS
Author, Co-Author Bin Zhang, Xiaofeng Tao, Guofu Shen, Janice Wensveen, Earl Smith, Izumi Ohzawa, Yuzo Chino
Topic
Year
2013
Day
Friday
Program Number
130883
Room
Room 2A
Affiliation
Nova Southeastern University, College of Optometry
Abstract PURPOSE:
The neural basis of vision deficits associated with amblyopia is poorly understood except for the well-established ocular dominance imbalance in V1 of monocularly form deprived animals. In this study we employed a new approach to study vision deficits in amblyopic monkeys that may give us an insight into a neural basis of position uncertainty, distortion, and/or deficit orientation discrimination in human amblyopes.

METHODS:
We simulated anisometropic amblyopia by having infant macaque monkeys wear defocusing lens in one eye between 3 weeks and 3 months of age. When they matured we obtained their spatial contrast sensitivity functions to determine the depth of amblyopia. We recorded action potentials from multiple nearby units with a single electrode. We employed dynamic two dimensional noise stimuli and a reverse correlation (LSRC) method to reveal subfields within the receptive field of each V2 neuron. The spatial maps of these subfields were compared between multiple nearby neurons with respect to their preferred orientations, spatial frequencies, and response strength. We quantified the heterogeneity index (HI) of the subfield maps for each unit (within comparison) and between units (across-unit comparison).

RESULTS:
In normal monkeys, the HI was very low both within a given unit and across nearby units. In amblyopic monkeys, 1) for the within-unit comparison, the HI of the subfield maps driven by the amblyopic eye was similar to that for the fellow eye, but both were significantly higher than in normal monkeys; 2) for the across-units comparison, the HI of the subfield maps for the amblyopic eye was far greater than that for the fellow eye, which was also significantly greater than that in normal monkeys; 3) the abnormally high HI in amblyopic monkeys did not result from weak or noisy responses. 

CONCLUSIONS:
The results suggest that the fine circuitry supporting the feed forward connections from V1 to V2 and the local connections within V2 appear to be disrupted in amblyopic monkeys, and that robust binocular suppression may be involved, at least in part, with the ‘disarray’ in the subfield maps of amblyopic monkeys.

Affiliation of Co-Authors University of Houston, College of Optometry, University of Houston, College of Optometry, University of Houston, College of Optometry, University of Houston, College of Optometry, University of Houston, College of Optometry
Outline