Introduction

- Vision rehabilitation is a growing field in Acquired Brain Injury (ABI) rehabilitation
 - ABI is defined as any type of brain injury that occurs after birth
 - Ex: CVA, TBI, Neoplasms, aneurysms
 - Excludes neurodegenerative conditions
 - Visual disorders related to ABI are unique
 - Integration of optometrists in rehabilitation is important to assess and manage visual sequelae of ABI to improve outcomes

Optometric Care of the Patient with ABI, (AAO 2002, AOA, 2003)

- Treatment of visual dysfunction with lenses, prism, occlusion, low vision devices, and or VT
- Treatment of ocular disease or injury directly or by co-management with other health care professionals
- Counseling and education of patient, family or caregiver about visual problems, functional implications, goals, prognosis and management options
- Consultation with other professionals involved in the rehabilitation and health care of patient

Aren’t all acquired brain injury patients the same?

- Patients with CVA typically have poorer outcomes
 - Increased memory and visual memory deficits
 - Severe cognitive deficits
 - Typically referred later for rehabilitation
 - Slower progress
 - More likely to remain in residential care

Stroke

- 4th leading cause of mortality in US
- Leading cause of disability in US
 - Moderate to Severe disability for older adults
 - $18.8 Billion in medical and rehabilitative care
 - $15.5 Billion in lost productivity
 - Morbidity and Mortality Weekly, May 2012
- 20% reduction in years of potential life lost
 - Marin et al, 2011

CVA and Prevalence

- CVA most common >65 years of age (8.3%)
 - 0.7% 18-45 years old
 - 2.9% 45-64 years old
- 2.6% prevalence in the United States (2010)
 - Increased prevalence
 - Geographic location
 - Race/Ethnicity
 - Age
 - Gender

Morbidity and Mortality Weekly, May 2012
CVA and Children

- 6:100,000 children
 - 60% Male
- Hemorrhagic stroke >Ischemic Stroke
 - Increase in binocular vision issues
- Risk factors differ from adults
 - Increase in children with cardiovascular disorder
- Side effect of stroke similar to adults
 - Increase in Seizures and Cerebral Palsy
 - National Stroke Institute, cited 7/1/2013

Ischemic Stroke

- 80% of all stroke
- Atherosclerotic changes
 - Emboli
 - Thrombus
- Increase in cellular edema
 - Failure of ATP pumps leads to depolarization
- Symptoms
 - Location of affected vessel
 - Collateral Blood Flow
 - Middle Cerebral Artery
 - Hemianopsia
 - Contralateral Sensory/weakness
 - Neglect
 - Posterior Cerebral Artery
 - Memory Loss
 - Hallucinations
 - Ataxia
 - Altered Consciousness
 - Dyslexia
 - Sensory Loss
 - Frizzell 2005

Hemorrhagic Stroke

- 20% of all CVA
 - 50% mortality rate
- Ruptured Blood Vessels
 - Hypertension
 - Trauma
 - Vascular Malformation
 - Change in blood brain barrier: vasogenic edema
 - Leads to increased cranial pressure
- Symptoms
 - Related to site of injury
 - Severity of damage
 - Anterior Cerebral Artery
 - Contralateral weakness/sensory loss
 - Middle Cerebral Artery
 - Vertebral Artery
 - Lid Lag
 - Swallowing
 - Basilar
 - Double Vision
 - Paresis
 - Dizziness
 - Ataxia
 - Frizzell 2005

Pathophysiology

- Disruption of circulation to brain tissue
 - Acute
 - Chronic
- Cerebral Perfusion Pressure
 - MAP-ICP=CPP
 - <50 mmHg cell death occurs
- Two main mechanisms
 - Ischemic
 - Hemorrhagic

Frizzell
2005
Warren’s Hierarchal Model of Visual Processing

- Integration of different levels of visual skills within the matrix of visual processing
- Complex visual tasks require integration of basic visual skills to build a foundation
- Deficits of basic function impact complicated visual tasks – Zoltan, 2007

Approach to patient assessment

- Start with basic components of vision and increase complexity
 - Look for areas of deficiency
 - Build areas of visual complexity
 - Single word vs. Continuous text
 - Ordered vs. Disordered patterns
 - Listen for fluency
 - Note optotype size of most fluent reading for Rehab prof
 - Screen cognition and memory

Patient-centered success

- Cognition
- Learning capacity
- Awareness of potential
- Self-awareness of vision deficit
- Complexity of task

Case History

<table>
<thead>
<tr>
<th>Required Questioning</th>
<th>Expanded Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief complaint</td>
<td>Functional Complaints</td>
</tr>
<tr>
<td>HPI</td>
<td>– Blur, diplopia, fatigue</td>
</tr>
<tr>
<td>Ocular History</td>
<td>– Performance of ADL’s</td>
</tr>
<tr>
<td>Family Ocular History</td>
<td>– Vocation/Previous Vocation</td>
</tr>
<tr>
<td>Medical History</td>
<td>– Previous hobbies and interests</td>
</tr>
<tr>
<td>Medications and Allergies</td>
<td>– Educational level</td>
</tr>
<tr>
<td>Family Medical History</td>
<td>– Support system</td>
</tr>
<tr>
<td>Patient Orientation</td>
<td>– Ongoing/previous Rehabilitation</td>
</tr>
</tbody>
</table>

Case History

<table>
<thead>
<tr>
<th>ABI related questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature of injury</td>
</tr>
<tr>
<td>– Type</td>
</tr>
<tr>
<td>– Date</td>
</tr>
<tr>
<td>– Number of injuries/CVA</td>
</tr>
<tr>
<td>– Length of hospitalization</td>
</tr>
<tr>
<td>Rehabilitation History</td>
</tr>
<tr>
<td>– Inpatient and outpatient services</td>
</tr>
<tr>
<td>– Current and previous</td>
</tr>
<tr>
<td>– Current visual complaints</td>
</tr>
</tbody>
</table>

ABI, An Integrative Neuro-Rehabilitation Approach Elbaum and Benson
Observation

- Physical appearance
 - Clothing
 - Facial appearance
 - Visual attention
- Head turn or head tilt
- Mobility
- Motor weakness
- Support System

Communication Disorders

- Following brain injury, patients may experience several issues
 - Difficulty participating in conversation
 - Difficulty following changes in conversations
 - Inappropriate responses to questions or comments
 - Lack of self-awareness of inappropriate comments
 - Inability to detect sarcasm or humor
 - Elbaum & Benson, 2007
 - Zoltan, 2007

Communication Disorders

- Expressive Aphasia- Broca’s area (Area 22)
 - Inability to produce speech
- Receptive Aphasia- Wernicke’s Area (Area 44)
 - Inability to understand spoken word
 - Difficulty with speaking correct meaning
- Global Aphasia- Broca’s, Wernicke’s and Arcuate fasciculus
 - Combination of Expressive and Receptive
 - Limited vocabulary, if any

Cognitive Testing

- Cognitive Tests
 - MMSE
 - MOCA
- Test selection is important
 - Screening tests
 - Validity
 - What are you actually measuring?

Montreal Cognitive Assessment (MOCA)

<table>
<thead>
<tr>
<th>Item</th>
<th>Maximum Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation</td>
<td>5</td>
</tr>
<tr>
<td>What is the day, month, season, date, year? Where are we? i.e. State, place, country, office, floor</td>
<td>5</td>
</tr>
<tr>
<td>Registration</td>
<td>3</td>
</tr>
<tr>
<td>Name three objects and ask patient to repeat</td>
<td></td>
</tr>
<tr>
<td>Calculation and Attention</td>
<td>5</td>
</tr>
<tr>
<td>Serial Subtraction of 7 or spell a five letter word backwards (i.e. world)</td>
<td></td>
</tr>
<tr>
<td>Recall</td>
<td>3</td>
</tr>
<tr>
<td>Ask patient to repeat words from Registration</td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>2</td>
</tr>
<tr>
<td>Name a pencil and watch Repeat “no ifs, ands or buts”</td>
<td></td>
</tr>
<tr>
<td>Follow a three stage command Read and obey “close your eyes”</td>
<td>3</td>
</tr>
<tr>
<td>Write a Sentence</td>
<td>1</td>
</tr>
<tr>
<td>Copy a design of two intersecting pentagons</td>
<td>3</td>
</tr>
</tbody>
</table>
MOCA for VI or Blind

[MOCA test image]

- www.moca.org

Visual Acuity

- Assess current visual potential
- Use measures to improve detail detection
 - Refraction
 - Magnification
- Method of acuity measurement should be determined by patient
- Communicate size of letter to rehabilitation professionals

Visual Acuity Testing

- Letter or Number recognition
 - Line vs. isolated
- Shapes or figures
- Directed gaze
- Preferential Looking
- Fixate and follow
- Light perception
- No Light Perception

Refraction

- Adjust lighting to comfortable level
- Trial Frame vs phoropter
 - Allows for head turn/tilt
 - Large lens jumps
 - Trial accessory lenses (yoked prism)
- Determine refractive error
 - Subjective measurements may fluctuate
 - Rely on objective measurements
 - Go slow

Prescribing

- 88% of patients ABI patients correct to 20/20 (Sabates 1991)
- Consider mobility/field when prescribing
 - Bifocal vs. Single vision
- Increased sensitivity to small changes in prescription
 - Exacerbates visual stimulation, figure ground
 - Trial frame full prescription, add plus to comfort
 - Prescription may fluctuate
- Translate findings to patient, family and caregivers

Entrance Testing

- Subjective or Objective
 - Pupils
 - Pupillary reaction time, APD
 - Pursuits and Saccades
 - Binocular Assessment
 - Color Vision
 - Contrast Sensitivity
 - Field Assessment
Binocular Vision

- Large area of discovery of CVA patients
- Rowe et al, 2011 Evaluated 323 patients
 - 68.4% had mobility or alignment deficit
 - 22% has strabismus
 - 32.7% convergence insufficiency
- Treatment options
 - Vision Therapy
 - Prism
 - Occlusion

Saccadic Dysfunction

- Hick’s Law: Time for decision to act or respond increases with number of choices presented
- Normal Saccadic function violates Hick’s law
 - Saccadic speed and accuracy does not increase with increasing levels of uncertainty (Keverga et al, 2002)
 - Saccades are initiated by interactions between cortex and subcortex

Saccadic Dysfunction

- Significance factor in field loss rehabilitation
- Hypometric saccades more common with Hemianopic loss
- Subjective visual difficulties highly correlated to saccadic dysfunction (Zihl)
 - Poor fixation
 - Scene scanning
 - Poor reading efficiency

Potential Rehabilitation Plan

- Home Therapy
- Large Saccades
 - Saccade between two known objects
 - Descriptive walking
 - Use post it notes in home environment
- Fine Saccades
 - Puzzles
 - Card games (Consider large print)
 - Word searches/cancellation
Visual Field Assessment

- Requires visual and cognitive skills
 - Repeat testing throughout rehabilitation
- Confrontation Fields
 - Static and dynamic
 - Check for inattention, extinction
- Static Visual Field
 - Requires decent reaction time
 - Requires 5-10 minutes of attention
- Kinetic Visual Field
 - Alter speed and stimulus size based on patient
 - Movement of stimulus can cause dizziness

Visual Field Loss

- Hemianopic field loss common amongst CVA
 - Visual Field loss, 49.5%
 - Complete Hemianopsia, 29.4%
 - Rowe et al, 2008
- Major impact on ADL’s
 - Mobility
 - Reading
 - Driving

Visual fields

- Hemianopic Field loss
 - Quality of life reduced compared to controls
 - Chen et al, 2009
 - Strong correlation between entire remaining field and Score on NEI-VFQ (r=.67)
 - Lower correlation when measuring UFOV, (r= .36)
 - Quality of life reduced compared to ON conditions
 - Near Vision affected more than distance
 - Driving most affected
 - Gall et al, 2009, Investigative Ophthalmology and Vision Science

Visual Field Rehabilitation

- Several options are available for field rehabilitation
 - Scanning
 - Prism
 - VRT
- Dynamic tasks may not respond to one type of therapy

Scanning therapy

- Retrain head and eye movements
 - Can improve Field by 35 degrees (Koons et al, 2010) (ABI)
 - 30 degrees, Bouwmeester, Heutink and Lucas, 2006 (BD)
- Goal to develop organized, efficient scan patterns
- Improvements in reading speed, mobility
 - Bouwmeester et al 2006

Scanning Therapy

- Rehabilitation Techniques
- Use near targets and progress to distance
 - Hart Chart, Quillman Exercises, word searches
 - Improves saccadic function, develops organized scanning
- Use distance targets and progress to near
 - Mobility
 - Descriptive Walking
Sloan Hemianopic Field Chart

Field Enhancement

- Mobility
 - Prism
 - Mirror system
 - Combination
- Near point tasks
 - High contrast borders
 - Tactile

Field Enhancement with Prism

- Refract light into preserved field
- 0.57 degrees of enhancement for every prism diopter
- Placement and fit of prism depends on patient
 - Binocular vision status
 - Presence of Neglect or Inattention
 - Scanning ability

Prism Assessment

- Prism
 - Aids in fusion
 - Field enhancement
 - Field relocation
- Patients are often referred to see if prism is of benefit
- Need to assess patient’s deficiencies before considering prism
 - Ie., saccades, cognition, binocular vision

Prism Placement

- Peli Prism Placement
 - Peripheral Diplopia
 - No image jump
 - Maintain Central Acuity
 - ~20 degrees of expansion
Prism Placement

- Sectoral Prism
 - Variable expansion
 - Image jump
 - Central Vision affected
 - Diplopia
 - Blur
 - Contrast loss

To Fresnel or not Fresnel...

To Fresnel
- >12 diopters
- Temporary treatment
- Cost
- Sectoral Placement
- Clarity and cosmesis are not important
- Weight is a factor
- Sutter

To not Fresnel
- Permanent prescription
- Low amount of prism
- Clarity and cosmesis is necessary
- Cost
- Prism is prescribed throughout the full field

Mirror system

- Reflection of light from hemianopic field to functional field
 - Can be angled, typically ~45 degrees
 - Opaque or semi opaque
- Opposite movement in mirror disorienting

Training with Field Enhancement Devices

- Field enhancement changes spatial awareness
 - Requires training
 - OT
 - O&M specialist
 - Handle device before application
 - Begin with static environment and objects
 - Progress to moving objects
 - Progress to dynamic environment

Field Enhancement Reading

- Enhance beginning and end of line
 - Use high contrast borders
 - Ruler
 - Post-it notes
 - Brightline Guides
 - Use hand/tactile to keep beginning of line
 - To follow printed material
 - Use straight edge to keep place
 - Use finger to keep place while reading
Cognitive Vision

• Utilize tests for 2nd and 3rd order visual processing
 – Know what you are looking for
 – Make sure test is valid**
 – Most pen and paper tests are screening tests
 • Demonstrates defects
 • One finding does not confirm diagnosis
 • Various scoring methods
 • Does not correlate to real space

Visual Spatial Defects

• Poor localization of objects
• Decreased depth perception
• Difficulty with orientation and travel
• Visual Neglect
 – One Hemifield
 – Both Hemifields (Balint’s Syndrome)

Cognitive Vision Testing

• Star Cancellation
 – Simple
 – Crowded
• Line Bisession
• Clock drawing
• Phone number
• Copy shape/drawing

Neglect rehabilitation

• Yoked Prism
 – Bilateral prism shifts image to match new visual midline
• Reminders
 – Post it notes
 – Leave list of directions
 – Separate paired items between normal field and field of neglect, ie toothbrush and tooth paste
• Auditory cues
 – Place small bells or shaker on bracelet on side of neglected field

Compensatory Techniques

• Magnification
 – Reduce effects of saccadic dysfunction
 – Fixation loss
• Contrast enhancement
 – Glare
 – Lighting
• Sight substitution
 – Auditory
 – Tactile

Magnification

• Magnification enlarges retinal image
 – Relative size magnification (RSM): Object is enlarged
 • Examples: Large print books, Large button phone
 – Relative distance magnification (RDM): Object is moved closer to eye
 • Sitting closer to television, moving book from 40 cm to 20 cm
 – Total Retinal Image Magnification: Product of all forms of Magnification presented
Benefit of Magnification

- Larger retinal image leads to larger ganglion receptive field
 - May absorb visual error from inaccurate saccades and fixation errors
 - Larger optotypes have been shown to increase fluency in patients with hyper- and hypo-metric saccades
 - Important to assess threshold with patient

Contrast Enhancement

- Glare
 - Discomfort Glare
 - Disability Glare
 - Filters
 - Fitover style vs. Spectacle treatments
 - Photochromatic
 - Wide Brim hat/visor
 - Typoscopes/acetate filters

Contrast Sensitivity

- Goal for rehabilitation improve contrast thresholds
- Interventions and modifications are designed to improve function
 - Improve detection and recognition by visual system
- Severe, profound contrast loss
 - Need multidisciplinary approach
 - OT, O&M, Rehabilitation Teachers
 - Brilliant, 1998

Organization

- Develop organization system with patient
 - Counsel family members
 - May need to train aspects of routine
- Reduce clutter in area of interest
 - Improve figure ground to allow visual attention for item of interest
 - Focus visual attention

Sight Substitution Strategies

- Utilize most efficient pathway for information
- Consider ways to reduce visual stress
 - Auditory
 - Talking watch/clock
 - Talking Caller ID
 - Talking books/news programs
 - Tactile
 - Bump dots
 - Velcro
Rehabilitation Team

- Referral source useful in relaying information
 - Response to rehabilitation
 - Prognostic indicators

- Communication is key
 - Visual rehabilitation
 - Activities and therapies by other specialists
 - Develop relationships

Rehabilitation Team

- Team approach is key
- Rehabilitation team
 - Occupational Therapist
 - Physical Therapist
 - Speech Therapist
 - Neuropsychologist
 - Neurologist/Neurosurgeon
 - Ancillary Therapy

Referrals and Communications

- Department of Human Services
 - Vocational and educational goals
 - Mobility training

- Department of Veteran Affairs
 - http://www.va.gov/BLINDREHAB/

- Scholastic Referrals
 - Vision teachers and O&M
 - College disability services

Conclusion

- Rehabilitation of stroke patients requires careful attention to visual symptoms
- Vision rehabilitation enhances ancillary rehabilitation treatments for stroke patients
- Early intervention with vision rehabilitation strategies improves outcomes

Questions?

- Thank you!
- Contact Information:
 - ksquier@ico.edu