New Contact Lens, Surgical & Medical Management Options for Keratoconus

Pam Satjawatcharaphong, OD
University of California, School of Optometry
psatjawat@berkeley.edu

Tim Edrington, OD, MS
Southern California College of Optometry
at Marshall B Ketchum University
tedrington@ketchum.edu

It’s not rare…
if it’s sitting in your chair.

1 in 1,800 Kennedy et al. 1986
“Probably more common” Edrington 2014

Diagnosis of Keratoconus

Noninflammatory?
Low grade inflammatory component
Lema et al. 2009
Tx with Pataday (Alcon) QD or Alrex (B+L) QID X 2 weeks; then BID

Ectasia central / inferior cornea
Irregular astigmatism

ASymmetric Condition

<table>
<thead>
<tr>
<th>Better Eye</th>
<th>Worse Eye</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Keratometry</td>
<td>45.94 ± 4.10D</td>
<td>49.53 ± 5.83D</td>
</tr>
<tr>
<td>Steep Keratometry</td>
<td>48.51 ± 4.49D</td>
<td>52.86 ± 5.75D</td>
</tr>
<tr>
<td>High Contrast Best-Corrected Visual Acuity</td>
<td>7.30 ± 6.83 Letters</td>
<td></td>
</tr>
</tbody>
</table>

Age of Onset

Puberty
Earlier age of onset; more severe disease
Progressive until the third to fourth decade

CLEK Survey:
Mean age of diagnosis = 27.3 ± 9.5 years

The Manchester KC Study: n = 29
Mean age of diagnosis = 21±8 years
Gender

- Literature reports relatively equal incidence between males and females
- CLEK Study sample: 56.4% male, 43.6% female
- Manchester KC Study: 76% male
- Pellucid patients

Quality of Life (QOL) in KC

- Scores for CLEK subjects on all scales NEI-VFQ (Visual Function Questionnaire) were consistent with patients with category 3 and 4 (advanced AMD) age-related macular degeneration patients, except for...
 - General health was better for CLEK subjects (they’re younger)
 - Ocular pain was worse for CLEK subjects (they are forced to wear GPs)
 - “prior to” scleral lens prescribing

Keratoconus Patient Education

- You will not go blind from the condition
- Have a large and wonderful family
 - Average age of Dx 27.3 years in CLEK Survey
- LASIK is not a good idea
 - Both result in corneal thinning
- Back-off on the eye rubbing
- Corneal cross-linking

Eye Rubbing

- Consider Rxing
 - Lastacaft (category B anti-histimine) QD
 - Alaway (OTC) BID

Corneal Collagen Cross-Linking aka C3-R and CXL

- Photo-polymerization increases the number of collagen cross-links
- Goal is to strengthen (stiffen) the cornea
Corneal Collagen Cross-Linking (C3-R)

- Remove corneal epithelium (or not)
 - Corneal thickness should be 455 microns (including epithelium)
- Apply riboflavin 0.1% (Vitamin B2) drops
 - Every 3 min for 30 min pre-op; then every 5 min for 30 min tx
- Expose to ultraviolet (UVA) light (370 nm)

Coskunseven et al.
J of Refractive Surgery, April 09

<table>
<thead>
<tr>
<th></th>
<th>Best spectacle Corrected VA</th>
<th>Max K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Op</td>
<td>0.29 = 20/70</td>
<td>54.02 D</td>
</tr>
<tr>
<td>Mean 9 month Post-Op</td>
<td>0.40 = 20/50</td>
<td>52.45 D</td>
</tr>
<tr>
<td>Can patient stop wearing CL’ s?</td>
<td>Does this help Rx CL?</td>
<td></td>
</tr>
</tbody>
</table>

Complication and failure rates after corneal crosslinking
Koller et al., J Cataract Refract Surg, August 09

- 117 eyes of 99 patients
- Baseline, 6 mos, and 12 mos follow-up
- Percentage of eyes losing ≥2 lines of VA
 - 2.9% (95% CI, 0.6-8.5%)
 - Risk factors included >35 years of age
- Percentage of eyes exhibiting progression
 - 7.6%
 - Risk factor of steep K >58 D (or is cornea too thin?)

Who are good candidates for corneal cross-linking?

- Disease severity
 - K readings (steep K)
 - Corneal thickness
- Age
- Goal should be stabilization, not improvement

Cross-Linking in Pediatric Patients

- Arora et al. (*J Refract Surgery* Nov 2012)
 - 15 eyes of 15 patients; age range 10 to 15 years; 12 month f/u
 - CDVA 20/70 to 20/40; St K 57.18±6.39 to 56.76±6.78 D
- Zotta et al. (*J Refract Surg* Nov 2012)
 - 8 eyes of 4 patients; age range 11 to 16 years; 3 year f/u
 - VA improved 6 eyes (~1.17 lines) and stable in 2 eyes; MR stable

Cross-Linking in Pediatric Patients

- Chatzis and Hafezi (*J Refract Surgery* Nov 2012)
 - 59 eyes of 42 patients; age range 9 to 19 years; mean 26.3 mos f/u
 - "the effect of arrest of disease progression might not be as long-lasting as in adults"
- Buzzonetti and Petrocelli (*J Refract Surg* Nov 2012)
 - 13 eyes; age range 8 to 18 years; 18 month f/u
 - St K 48.90±6.60 to 52.90±4.90 D
 - "improved CDVA was noted 18 months after treatment…does not effectively halt keratoconus progression in children"
Other Thoughts about Cross-Linking

- Corneal haze post-procedure peaks at 1 month, generally disappears at 6 months
- Corticosteroids standard tx after cross-linking
- Age and diabetes are protective against keratoconus
- Epi-on procedures decrease infection risk
- Procedure now takes ~1 hour; in future 2min 40sec?
- Fit CL after epithelium is healed

Goal of corneal cross-linking should be stabilization, not improvement.

I fit CLs to enhance or improve vision, not to alter the progression of keratoconus.

Visual Acuity (CLEK Study)

- 88% were 20/40 or better through CLs
- 58% were 20/40 or better through manifest refraction
 - Is manifest refraction repeatable?
 - Is quality of vision adequate?
 - Depends on disease severity

Rigid Contact Lens Fitting Relationships in KC
Edrington, Szczotka, Barr et al. OVS Oct 1999

How flat they’re fitted
88% fitted apical touch

- Mild keratoconus (<45 D) 1.18 D flat (SD±1.84)
- Moderate (45-52 D) 2.38 D flat (SD±2.56)
- Severe (>52 D) 4.01 D flat (SD±4.11)
- Overall 2.86 D flat (SD±3.31)

GP Fitting Philosophies

- Flat = touching the cone apex
 - Better vision? Probably
 - Delay the need for surgery? NOT!
 - Increases risk of corneal scarring? Yes
- Steep = vaulting the cone apex
 - Less disruption to cone apex
Put on a lens!!!

“Pearl” from Tim

“Ideal” Corneal GP KC Fit
- Goal #1: feather “three-point” touch or slightest amount of apical clearance
- Goal #2: minimize area of tear pooling around base of cone
- Goal #3: average (to maximum) peripheral clearance to enhance tear exchange

 might not be uniform at all axis

FDACL
first definite apical clearance lens

How much touch?
- Little Bit o’touch (soft borders)
- More o’touch (harsh borders)

Avoid excessive areas of tear pooling around base of cone
- “Dimples aren’t always cute”
 Dr. Brooke Messer

Peripheral Clearance
More than Round (Designs)

Abound

- Aspheric / Biaspheric

 Tip: start by using manufacturer’s fitting guide and personalize over time

- Toric GP’s

 - Bitoric are tempting, but...

 - Prism-ballast front-surface toric

The Role of OAD in KC

- Traditional 8 to 9mm
- Intralimbal 10 to 12mm
- Scleral 14 to 23mm

Large OADs for KC

- Intralimbal corneal GPs

 - Option for decentered cone apex

 - Option to enhance initial comfort?

- Sclerals

 - Indicated for KC patients who are intolerant of GP lens wear

 - Indicated for KC patients whose GP lenses eject or decenter often

Scleral Indications

- Irregular Corneas
- Therapeutic / Ocular Surface Disease
- Corneal GP lens intolerance or ejection
- Cosmesis

 - Pupil

 - Aniridia

 - Prosthesis

General Scleral Lens Design

Assessment of Scleral Lenses

- Using an optic section, assess the ratio of the tear reservoir thickness to the central thickness of the contact lens, or the thickness of the cornea

- Example: 1:2 TL:CL ratio. Known lens center thickness is 0.35mm (350 µm), so tear lens reservoir is 175 µm
Assessment of Scleral Lenses

- There is a wide range of acceptable clearance (100-500 microns)
- Typically aim for 150-250 µm
- Tear reservoir thickness affects oxygen transmissibility
- 1 diopter = ~80 µm change
- The amount of clearance may vary throughout the lens
- Keep in mind scleral lenses tend to settle down ~100 µm with longer wear time, which can result in a thinner tear reservoir.

Assessment of Scleral Lenses

- Which of these two lenses has the steeper base curve?
- Cornea curvature ≠ Sagittal depth
- Both of these lenses have the same base curvature, but they have different diameters.
- The larger diameter lens has a deeper sagittal depth than the smaller diameter lens.

Assessment of Scleral Lenses

- Step One:
 - Does the lens vault or touch the cornea?

Assessment of Scleral Lenses

- Step Two:
 - Does the lens clear or touch the limbus?

Assessment of Scleral Lenses

- Step Three:
 - Evaluate the landing curves for proper scleral alignment
 - Focal or sectoral blanching may not require an adjustment
 - Blanching around majority of lens requires adjustment

Assessment of Scleral Lenses

- Step Three:
 - Evaluate the landing curves for proper scleral alignment
 - Slight edge lift can allow for + tear exchange
 - Excess edge lift can cause bubbles or lens awareness
Assessment of Scleral Lenses

- Step Four:
 - Perform an over-refraction
 - Spherical first to determine BCVA with sphere alone
 - Spherocylindrical second if ideal VA still not achieved
 - If necessary perform over-keratometry or topography

Troubleshooting Tips

Residual astigmatism may be caused by:
- Lens Flexure – increase center thickness by 0.1-0.2 mm or use back surface toric periphery
- Lenticular Astigmatism – can order front surface toric or design overlay glasses
- Generally should try with spherical design before moving to F1 toric

Troubleshooting Tips

- Air bubbles are most often a product of improper lens application technique, but can also be caused by improper scleral alignment/excessive edge lift.
- Bubbles can cause discomfort and interfere with vision.

Troubleshooting Tips

- Follow-up:
 - Patient should return having worn lenses 3-4 hours prior to follow-up to ensure lenses have settled
 - You can instill fluorescein with the lens on to determine whether there is tear exchange

Troubleshooting Tips

- Toric Sclera
 - As you move further from the limbus, the sclera becomes more toric
 - Larger overall diameter scleral lenses may require a toric periphery (back-surface toric) design to achieve appropriate alignment.

Troubleshooting Tips

- Midperipheral Bearing
 - Pellucid marginal degeneration or inferior displaced cones may require a reverse geometry design to vault the midperipheral area of bearing.
Troubleshooting Tips

Lens drop is an area of tear reservoir thinning or absence due to a very heavy and/or steep lens that decinters. It typically occurs in the superonasal quadrant of the lens.

Troubleshooting Tips

Pingueculae may cause localized hyperemia and require notching of the lens.

Troubleshooting Tips

Other irregular anatomical landmarks, like bulbar conjunctival cysts or filtering blebs, may also require notching.

Troubleshooting Tips

Conjunctival Hooding

Mild conjunctival hooding is generally inconsequential. Severe conjunctival hooding can cause neovascularization and may require fit adjustment or a resection procedure.

Troubleshooting Tips

Diffuse pancorneal epithelial erosions are often indicative of solution toxicity. Ensure the patient is properly educated on lens hygiene and proper solution use.

After You Dispense

A mild impression ring after lens removal without bulbar injection may be acceptable.
An impression ring with bulbar injection or limbal congestion indicates a tight and/or sealed-off fit.

Mild, transient rebound redness upon lens removal is acceptable, but excessive and persistent redness and limbal congestion is indicative of a tight fit/seal off.

Tear reservoir clouding can occur if debris accumulates under the lens. Many patients need to remove/clean lens at least once during the day. Solution “cocktail” of PF saline + Celluvisc may delay clouding.

Poor surface wetting can cause reduced vision. Can use Progent, Miraflow (Walgreens Extra Strength Daily Cleaner), Boston Conditioning, plasma treatment.

“The comfort of a soft lens with the vision of a gas permeable lens.”

After You Dispense

After You Dispense

After You Dispense

Application and Removal

Application and Removal
Application and Removal

Care Regimen & Solutions
- The fluid inside the lens should be a preservative-free saline solution. Preservatives sitting in the tear reservoir can cause a toxic reaction.

Care Regimen & Solutions
- GP lenses made with high Dk material are generally not compatible with abrasive cleaners.
- Acceptable Solutions:

Patient Management
- Considerations to discuss with patient prior to fitting:
 - Cost (fitting + lenses) – can bill as medically necessary with some insurances
 - Time investment – will require multiple visits
 - Application & Removal – may be difficult for patients with poor fine motor skills or dexterity, or anatomically small palpebral apertures

Patient Management
- Always prepare your patient ahead of time – no surprises:
 - Solution to fill scleral bowl should be preservative
 - May need to remove, clean, refill, and reapply lens
 - Transient rebound redness or an impression ring may occur after lens removal
 - Recommend take-home handout with pictures of acceptable solutions and resources

The Sky’s The Limit
- Scleral lenses are a useful tool for a wide range of patients
- They are incredibly customizable, and you have the ability to get creative
 - Many available diameters
 - Reverse geometry
 - Front surface toric
 - Back surface toric (toric periphery)
 - Center near aspheric multifocal
 - “Notching” for pterygia/cysts/blebs
Soft Lens Options for Keratoconus

- Available in a silicone hydrogel material
 - Kerasoft IC (Bausch + Lomb Boston Group)
 - 14.5mm OAD and 8.0mm OZD

- Made in Definitive material
 - Silicone hydrogel (Dk = 60)
 - Water content = 74%

- “Front-surface aberration control optics”

Piggy Back

- When?
 - Comfort (initial); 3-9 staining; bandage

- How?
 - Minus, plus power - how much?
 - Over-keratometry

- Effect on over-refraction
 - ~23% effect (Daniel Brazeau)

- Materials?
 - S-H? Modulous?

- Care system?

SynergEyes Fluorescein Patterns

Intacs

- For low myopia (1-3D)
- FDA approved for KC (2004)

- Goal for KC patients
 - To reduce corneal steepness
 - To center the cone apex
 - assists in CL fitting???

- KC candidates for Intacs
 - Clear central cornea
 - Steep K <57 D (too thin?)

Intracorneal ring segments for KC correction: Long-term follow-up

Alio et al., J Cataract Refract Surg, June ’06

<table>
<thead>
<tr>
<th></th>
<th>Best spectacle Corrected VA</th>
<th>Max K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Op</td>
<td>0.46 = 20/50</td>
<td>51.07 D</td>
</tr>
<tr>
<td>Mean 6 month</td>
<td>0.66 = 20/30</td>
<td>47.15 D</td>
</tr>
<tr>
<td>Post-Op</td>
<td>0.62 = 20/32</td>
<td>48.92 D</td>
</tr>
<tr>
<td>Mean 3 year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Op</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Post-INTACS Low Dk Toric SCL

(photo courtesy of Dr. Long Tran)
Corneal Hydrops

- Rare: 2 to 3% of KC patients
 - Advanced disease
 - Eye rubbing
 - Young males
 - Severe allergies
- High rate of PK
 - High rate of rejection (eye rubbing?)
- Resolves 2 to 4 months
 - Scarring
 - Haze
 - Flattening of K (refit?)

Therapeutic Treatment for Corneal Hydrops

- In-office, homatropine or scopolamine for pain
- At home, cool compresses for itch
- Muro 128 5% QID (drops/ointment)
- NSAID TID/QID for pain and inflammation
- Note: avoid (?) steroids because they slow healing (but may decrease scarring)

Deep Anterior Lamellar Keratoplasty (DALK)

- DALK involves the removal of the central stroma while leaving the host endothelium and Descemet's membrane intact and has been performed using air injection since 1984.

Advantages of DALK over PK:

- Immune rejection of the corneal endothelium cannot occur
- The procedure is extraocular and not intraocular
- Topical corticosteroids can usually be discontinued earlier with DALK
- There is minor loss of endothelial cell density
- Compared with PK, DALK may have superior resistance to rupture of the globe after blunt trauma
- Sutures can be removed earlier with DALK
Advantages of PK over DALK:

- PK can be used to treat corneal conditions that involve the endothelium, although EK (DSEK or DSAEK) may now be preferred.
- PK can treat penetrating corneal trauma, especially if there is loss of corneal tissue.
- PK can be used if there is scarring down to the level of DM, such as post-acute hydrops in keratoconus, old penetrating central corneal injuries, and severe post-infectious corneal ulcers.
- PK is a more familiar operative procedure for most corneal surgeons.

Post-Penetrating Keratoplasty (PK or PKP)

Corneal Buttons

- Many surgeons use a trephine.
- Manual “cut” puts torsional pressure on the corneal button.

Corneal Buttons

- IntraLase femtosecond laser creates smoother graft edges.
 - New cut patterns improve button fit.
 - Reduces surface irregularities.

IntraLase Advanced Keratoplasty

- Increased surface area of contact.
- Early fibrosis leading to early healing.

Slide courtesy of Dr. Dan Tran.

*Zig Square image courtesy of Sharon Days MD.
Full Thickness PK

115.2 Femtosecond Assisted Penetrating Keratoplasty: Dissection of Recipient Button and Donor Suturing
Marjan Farid, Sumit Garg, Roger F. Steinert

Penetrating Keratoplasty Sutures
- Surgeon’s preference
- Depth - approximately 90% into stroma
- Running – faster, fewer knots
- Interrupted – can be removed to control astigmatism (CL refit?)
- Combination – allows for early removal without risk of compromising graft

Management of Penetrating Keratoplasty (Post-PK)

Corneal Graft Rejection
- 1 to 3 months post-op is highest risk period
 - but can happen anytime
- Watch for:
 - sub epithelial infiltrates (SEI)
 - cloudy central cornea
 - pain, redness, sudden blur complaints
 - increased light sensitivity
 - epithelial or endothelial rejection lines
 - IOPs >20mmHg - #1 cause of graft rejection

Corneal Graft Rejection

Management of Penetrating Keratoplasty
- ~3 to 6 months to 1 year post-op “safe” to fit CL’s
- Check ocular health at each F/U
 - Corneal staining
 - IOP’s
 - Watch for signs/symptoms of rejection
- Some patients remain on Pred Forte 1% for the rest of their lives
 - Some are also on oral anti-inflammatory or immunosuppressive meds
- Co-manage with surgeon
Post-Penetrating Keratoplasty
- Over 50% of post-PK pts. have 4 or more diopters of astigmatism
- Irregular astigmatism is most common
- Up to 50% of post-PK patients benefit from CL wear
- Will the results be better with new femtosecond full and partial-thickness surgical procedures?

Post-PK Select lens design based on type of corneal graft
- Nipple / Proud graft
 - Sphere or aspheric
- Sunken / Plateau graft
 - Reverse geometry
- Tilted / Eccentric graft
 - Large OAD / Scleral
- SCLERALS
 - Be Careful with lens removal using DMV

Consider the graft diameter when selecting the lens optic zone diameter
- Reverse geometry design: "Junctional knee"

Large CORNEAL Lenses for Post-PK (and other irregular corneas)
- Start with corneal topography
 - To get the lay of the land
- Start with a large (intralimbal) OAD sphere DxCL
 - Unless graft is highly oblate (reverse-geometry)
- Select initial BC based on...
 - Oblate vs prolate vs...
 - Initial BC 1.0 to 1.5 D steeper than post-operative flat K or sim K
 - or 4mm temporal

Post-PK Reverse geometry (steep/flat option)
Large Lenses for Irregular Corneas

- GP lenses can mask *significant* amounts of corneal surface irregularities.
- Start with corneal topography:
 - To get the lay of the land.

Get a lens on the eye!

- Original fit
 - FP evaluation (inside-out)
 - Apical relationship
 - Optic zone size
 - Peripheral clearance
 - Lens position and movement

Get a lens on the eye!

- At follow-up visits
 - Evaluate fitting relationship
 - Monitor for corneal staining “patterns”
 - Location, density, and appearance

Minimize Areas of Excessive Clearance and Harsh Bearing

Sclerals and PK issues and pearls

- Varied shapes of grafts can make vaulting with scleral challenging
 - Recommend reverse geometry design to mimic oblate shape of post-graft cornea
- Oxygen transmissibility can be limited by many factors
 - Overall diameter, scleral center thickness, tear reservoir thickness, and Dk of material should all be taken into consideration to maximize oxygen to the eye.