Ocular Sequelae of Blunt Trauma: A Case Comparison

We present two patients with history of blunt force trauma. Each patient exhibits different complications as a result of ocular trauma. This case comparison highlights the spectrum of ocular sequelae of blunt force trauma.

I. Case History
 i. Patient MC
 i. 40 YO AAM
 ii. CC: unilateral swollen red eye, unable to open, blurred vision, photophobia OS, denies pain
 iii. POHx: no pertinent history
 iv. PMHx: no pertinent history
 v. Reports getting in a fight the previous night and either getting kicked or a brick thrown directly at left eye (unsure because events occurred quickly). Reported to ER after incident, CT scan was performed and was referred to eye care provider for evaluation.

 ii. Patient HC
 i. 30 YO HM
 ii. CC: unilateral swollen red eye (-) relief w/ Visine, blurred vision, peripheral floaters, 1/10 pain OS
 iii. POHx: no pertinent history
 iv. PMHx: no pertinent history
 v. Reports getting jumped by two men two nights prior and was hit with a fist in the left eye. Reported to ER after incident, CT scan was performed and was referred to eye care provider for evaluation.

II. Pertinent findings
 i. Patient MC
 i. BCVA: OD:20/20 OS:20/50
 ii. Pupils: PERRL(-)APD
 iii. EOMs: FROM OD, restricted in all gazes (+)diplopia OS
 iv. CVF: Abnormal field superior 2nd to chemotic lid OS
 v. Slit Lamp Exam: OD within normal limits, OS as follows:
 i. Lids/lashes: 3+ periorbital edema, serous discharge with minimal blood, trace lid abrasion, ecchymosis, entropion secondary to swelling
 ii. Conjunctiva: 4+ chemosis, 4+ injection, 3+ subconjunctival hemorrhage, conjunctival protrusion with lid closure, mucus strands
 iii. Cornea: central 3mm round abrasion, (-)Seidel’s sign
 iv. Anterior Chamber: deep, 0.5+ cells (-)hypopyon(-)hyphema
 v. Lens: clear lens (-)subluxation
 vi. IOP: OD:31mmHg OS:27mmHg (Tonopen w/ significant patient squeezing)
vii. Dilated Fundus Exam: OD within normal limits, OS as follows:
 i. Vitreous: clear, (-)Shafer’s sign
 ii. Optic Nerve: flat, sharp, good color, CD:0.4/0.4
 iii. Macula: darkened macula
 iv. Vessels: normal vessels, retinal whitening along inferior nasal arcades
 v. Periphery: flat x 360 degrees, no RD, no holes, unable to view far periphery secondary to EOM restriction

viii. Additional Tests:
 i. Maxillofacial CT without contrast: Done at ER. Slight exophthalmos of the left globe, mild straightening of the left optic nerve, question of tiny nondisplaced fracture of the left lamina papyracea
 ii. Slit Lamp Photos
 iii. OCT: (+)macular thickening OS
 iv. Fundus Photography
 v. B-Scan: (-)scleral breaks (-)retinal detachment OS
 vi. Facial Sensitivity: Equal OU, Denies Crepitus
 vii. Color Vision: 11/11 Ishihara OD, OS; 10/10 Red Cap OD, OS

ii. Patient HC
 i. BCVA: OD:20/20-3 OS:20/25+1
 ii. Pupils OD:Bright:3.5mm Dim:4mm OS:Bright:5mm Dim:6mm (-)APD
 iii. EOMS: FROM OU
 iv. CVF: FTFC OU

 v. Slit Lamp Exam: OD within normal limits, OS as follows:
 i. Lids/lashes: 2+ ecchymosis
 ii. Conjunctiva: 1+ diffuse injection, 1+ subconjunctival hemorrhage temporal and inferior
 iii. Cornea: clear, (-)Seidel’s sign
 iv. Anterior Chamber: 2+ cells (-)hypopyon(-)hyphema
 v. Lens: clear lens (-)subluxation

 vi. IOP: OD:15mmHg, OS:12mmHg (Goldmann)

vii. Dilated Fundus Exam: OD within normal limits, OS as follows:
 i. Vitreous: clear, (-)Shafer’s sign
 ii. Optic Nerve: flat, sharp, good color, CD:0.5/0.5, crescent- shaped subretinal blood inferior to optic nerve
 iii. Macula: flat, no macular edema
 iv. Vessels: normal vessels
 v. Periphery: inferior pigmented lattice, (-)holes

viii. Additional Tests:
 i. CT scan: Done at ER. Results within normal limits OU
 ii. External Photos
 iii. OCT: subretinal fluid inferior to optic nerve (-)retinal breaks
 iv. Fundus Photography
III. Differential diagnosis
i. Patient MC
 i. Leading: Commotio retinae w/ macular involvement, Corneal abrasion, EOM restriction secondary to excessive orbital tissue edema, subconjunctival hemorrhage
 ii. Other: Traumatic Retrobulbar Hemorrhage, Traumatic Optic Neuropathy, Carotid Cavernous Fistula, Ruptured Globe

ii. Patient HC
 i. Leading: Choroidal Rupture, Traumatic Uveitis
 ii. Other: Angioid Streaks, Lacquer Cracks, Primary Uveitis

IV. Diagnosis and discussion
i. Commotio retinae w/ macular involvement
 i. Occurs secondary to contra coup forces that mechanically disrupt the outer segment of photoreceptors.
 ii. Decreased visual acuity is observed when the macula is involved.
 iii. A grading scale for macular commotio retinae based on features seen on OCT imaging has been developed. The extent of photoreceptor damage can be determined, and in turn help estimate prognosis for visual recovery (Grade 4 has worst prognosis).
 i. Grade 1: Increased IS-OS junction reflectivity with disappearance of hyporeflective optical space
 ii. Grade 2: Cone outer segment tip (COST) defects only
 iii. Grade 3: COST and IS-OS junction defects
 iv. Grade 4: COST defects, IS-OS junction and ELM defects
 v. OCT results of patient MC correlate with Grade 1, VA will likely return to pre-injury level.
 iv. Clinical signs and BCVA typically improve around 3 months post trauma
 v. A study following outcomes of macular commotio retinae reported that 84% of patients returned to a VA better than 20/30.

ii. Corneal Abrasion
 i. One of the most common ocular emergencies
 ii. Decreased VA in patient MC can likely be attributed to a combination of macular commotio retinae and a central corneal abrasion.

iii. EOM restriction secondary to excessive chemosis of orbital tissues
 i. EOM motility is improving each day as swelling decreases
 ii. (+) forced duction testing informs us that the muscles are mechanically blocked, and innervation is not reason for decreased motility

iv. Subconjunctival hemorrhage w/ significant chemosis
 i. Traumatic subconjunctival hemorrhage is usually localized to the temporal area
 ii. Subconjunctival hemorrhage 360 degrees can be indicative of a ruptured globe.

v. Choroidal Rupture
 i. Occurs in 5-10% of blunt ocular trauma cases
 ii. Incidence is considerably higher in males vs females.
iii. Choroidal ruptures secondary to a punch will spread the force more diffusely than a projectile object and are more likely to cause peripapillary rupture. This diffusion of force leads to a better visual prognosis.

iv. One study shows that choroidal neovascular membranes form in approximately 10% of patients with choroidal rupture. This most often occurs between 1 and 18 months after the initial injury and 81.2% occur during the first 12 months.

vi. Traumatic Uveitis
 i. Typically young, male, unilateral
 ii. One of the most common diagnoses status post trauma.
 iii. Better visual outcome than non-traumatic uveitis

V. Treatment, management
i. Patient MC
 i. Commotio retinae w/ macular involvement – Monitor for resolution within 1-6 months with OCT/DFE
 i. Patient reassurance that vision will likely return to normal, emotional support secondary to reduced VA
 ii. Acuity monitoring, Amsler Grid testing
 ii. Corneal abrasion – erythromycin ointment QID OS, artificial tears q1hr, cycloplegic instilled in office, follow up daily to ensure resolution
 iii. EOM restriction secondary to excessive chemosis of orbital tissues – cool compresses QID OS, monitor closely as edema improves to ensure resolution
 iv. Subconjunctival hemorrhage – Limitations on NSAID use, avoid heavy lifting or straining, monitor closely for resolution, perform gonioscopy to rule out angle recession
 v. Lamina Papyracea Fracture – Educated on risks of infection with nose blowing.

ii. Patient HC
 i. Choroidal Rupture – Monitor closely within the first year post injury for choroidal neovascular membrane formation with OCT/DFE/Photos
 ii. Traumatic Uveitis – prednisolone acetate 1% gtt's QID OS x 7 days
 i. cycloplegic agent, steroid drops QID, very short taper of steroid drops
 ii. Perform gonioscopy to rule out angle recession

iii. References

VI. Conclusion

i. Ocular blunt force trauma has a spectrum of complications.

ii. Optical coherence tomography can be especially helpful in the diagnosis and management of posterior complications of ocular trauma such as commotio retinae and choroidal rupture.

iii. Several complications of blunt force trauma must be watched for years after initial event due to long term implications.