Chemical Corneal Burn Secondary to BAK

Opal Amin, O.D.
Cornea and Contact Lens Resident
University of Houston College of Optometry
Abstract

• This is a case of a 63 year old Hispanic female with a chemical corneal burn secondary to an accidental topical application of a 0.05% benzalkonium chloride solution.
Case History

- 63 year old Hispanic female presented for an emergency office visit with complaints of a red, painful, watery eye X 2 weeks

- HPI
 - Burning/pain: 7/10
 - Constant watery discharge
 - Swelling of right upper lid
 - (-) photophobia
 - (-) decrease vision
• HPI continued
 – 2 weeks ago patient instilled 2 gtts “Dr. G’s Clear Nail” (0.05% benzalkonium chloride, pH=7.0) into right eye mistaking it for artificial tears
 – She flushed her eye with tap water X 15 minutes
 – PCP for treatment the following day
 Initial visit: Began prednisolone 1% (Pred Forte 1%) QID OD X 4 days with pressure patching for first 2 days—no improvement in symptoms
 2nd visit: d/c Pred Forte 1%, began erythromycin ung qhs X 1 week showing minimal improvement
Case History

• POH
 – LEE: 9/14/2006 @ University Eye Institute
 – (+) mild cataracts OU

• PMH
 – (+) systemic hypertension X 1 year

• MEDS
 – amlodipine besylate (Norvasc)
 – hydrochlorothiazide
 – telmisartan (Micardis)
Case History

- FOH
 - (-) glc/blindness

- FMH
 - (+) systemic hypertension - mother

- NKDA

- SH: vendor
Exam Findings

- **BVA**
 - OD 20/40⁻²
 - OS 20/20

- **CVF**: FTFC OD & OS

- **EOMs**: unrestricted, smooth, accurate OU

- **Pupils**: (+) APD OD (not confirmed by attending and not noted on subsequent visits)
Exam Findings

BIOMICROSCOPY (OD)

L/L 3+ erythema/chemosis

Conj 3+ chemosis; 4+ injection

Cornea 4+ SPS; epithelial heaping (~3 mm x 4 mm)

(-) Rose Bengal staining

A/C (-) cells/flare

Iris brown, flat

Lens 1+ NS

Vitreous quiet
Exam Findings

• Assessment
 – Chemical Corneal burn OD 2º to BAK

• Plan
 – Corneal debridement OD performed in-office
 – Bandage CL: Focus Night & Day
 – Vigamox QID OD
 – Artificial tears q1h
 – RTC 1 day for follow-up
Day 2

VA
20/200 PH: 20/80

Biomicroscopy

L/L: 3 + erythema/chemosis

Conj: moderate chemosis; 4+ injection

Cornea: 3 + endothelial folds; epithelial defect (4.2 x 3.1)

A/C: 3 + cells

Iris: brown, flat

Lens: 1+ NS

Vitreous: quiet

Plan
Continue Vigamox QID, ATs q1h
RTC in 1 day for follow-up
Day 3

VA
20/200+2 PH: 20/60-

Biomicroscopy
L/L: 1+ erythema/chemosis
Conj: moderate chemosis; 4+ injection
Cornea: 2+ endothelial folds; epithelial healing line
A/C: 1+ cells
Iris: brown, flat
Lens: 1+ NS
Vitreous: quiet

Plan
Continue Vigamox QID, ATs q1h
RTC 1 day for follow-up
Day 4

VA
20/100 ph: 20/50

Biomicroscopy
L/L: 1 + erythema/chemosis
Conj: mild chemosis; 4+ injection
Cornea: 2 + endothelial folds; 4+ SPS
A/C: trace cells
Iris: brown, flat
Lens: 1+ NS
Vitreous: quiet

Plan
Remove BCL, Vigamox QID, Lotemax QID, ATs q1h
RTC 1 day for follow-up
Day 5

VA

20/70 ph: 20/50-

Biomicroscopy

L/L: 1+ erythema/chemosis

Conj: mild chemosis; 4+ injection

Cornea: 2+ endothelial folds; superior temporal epithelial heaping; 4+ SPS

A/C: (-) cells

Iris: brown, flat

Lens: 1+ NS

Vitreous: quiet

Plan

Lotemax BID, Vigamox QID, Muro 128 qhs, ATs; pt was educated on recurrent corneal erosions (RCE)

RTC 3 days for follow-up
Days 6 & 7

VA
20/80 ph: 20/50⁺²

Biomicroscopy
L/L: 1 + erythema/chemosis
Conj: mild chemosis; 1+ injection
Cornea: (-) epithelial folds; 3+ SPS
A/C: (-) cells
Iris: brown, flat
Lens: 1+ NS
Vitreous: quiet

Plan
Lotemax BID, Vigamox BID, d/c Muro 128, Ats
RTC 3 days for follow-up

BVA
20/30⁻²

Biomicroscopy
L/L: tr erythema/chemosis
Conj: mild chemosis; 1+ injection
Cornea: superior temporal epithelial heaping; 3+ SPS
A/C: (-) cells
Iris: brown, flat
Lens: 1+ NS
Vitreous: quiet

Plan
d/c Vigamox, Lotemax qd, Ats
RTC 1 week for follow-up
Day 8

BVA
20/25

Biomicroscopy
L/L: trace chemosis
Conj: trace injection
Cornea: 1+ SPS
A/C: (-) cells
Iris: brown, flat
Lens: 1+ NS
Vitreous: quiet

Plan
Lotemax qod, RTC 1 month for follow-up
Chemical Burns

Frequency

– Ocular Burns represent 7-18% of all presenting ocular traumas
 • Chemical Burns: 84%
 – Acids: Alkali
 » 1:1 to 1:4 (depending on the study)
 • Thermal Burns: 16%
Diagnosis

• Good history!!!
• Symptoms
 – Pain
 – Photophobia
 – Reduced vision
 – Colored haloes around lights
• Signs
Ocular Signs

• Mild to Moderate
 • Eyelid edema
 • Mild anterior chamber reactions
 • 1st and 2nd degree burns of periocular skin
 • Conjunctiva
 – Chemosis
 – Hyperemia
 – Hemorrhages
 • Corneal epithelial defects
 – Scattered superficial punctate keratitis
 – Focal epithelial loss
 – Sloughing of the entire epithelium
Ocular Signs

• Severe

• Cornea
 – Edema
 – Opacification
 – Moderate to severe AC reaction
 – Stromal haze
• Increased IOP
• 2nd and 3rd degree burns of surrounding skin
• Local necrotic retinopathy (alkali penetration through sclera
• Conjunctiva
 – Pronounced chemosis
 – Blanching
Characteristics

Majority of ocular chemical burns

– Acidic (pH<4)
 • Bind with tissue proteins and coagulate the surface epithelium
 • This bars further penetration and limits the extent of the burn
 • Examples: car batteries (sulfuric acid)

– Alkaline (pH>10)
 • More frequent
 • More severe
 • Destroy the cell structure of the epithelium, stroma, and endothelium
 • Examples: ammonia, lye and lime
Characteristics

• Benzalkonium chloride
 – Most commonly used preservative in ophthalmic solutions
 – Cationic detergent surface action
 • Very rapid and prolonged incorporation into cell lipid membranes
 • Directly causes decreased stability and increased evaporation of precorneal tear film
 – Causes decreased stability indirectly by decreasing the density of goblet cells in the conjunctival epithelium
Pathophysiology

- Studies show that upon application of BAK
 - Superficial epithelial cells appear to peel away exposing the underlying wing cells
 - Loose cell-to-cell junctions due to edema
- Desquamation of the corneal epithelial cells is dependent on BAK concentration
- BAK along with other preservatives are responsible for the induction of ocular surface inflammation, allergies, fibrosis, and dry eye syndrome (DES)
Mechanism of Action

• Theories
 – Apoptosis (accepted theory)
 • Programmed cell death
 • Dose-dependent
 – Cell lysis
Conjunctival Cell Viability
1st Treatment vs. 2nd Treatment
Relative Cell Number

![Graph showing relative cell number over time with absorbance on the y-axis and time after treatment on the x-axis. The graph includes control and treated samples at different concentrations.](image)
Corneal Thickness

Epithelium

A = Tears
B = Moxi
C = Cipro
D = Gati
E = Oflox
F = Levoj

Stroma

A = Tears
B = Moxi
C = Cipro
D = Gati
E = Oflox
F = Levoj
Common Ocular Drugs Containing BAK

<table>
<thead>
<tr>
<th>Topical Ophthalmic Preparation</th>
<th>% BAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ofloxacin 0.3% (Ocufox)</td>
<td>0.005%</td>
</tr>
<tr>
<td>Gatifloxacin 0.3% (Zymar)</td>
<td>0.005%</td>
</tr>
<tr>
<td>Ciprofloxacin 0.3% (Ciloxan)</td>
<td>0.006%</td>
</tr>
<tr>
<td>Ofloxacin 0.3% (Ocuflox)</td>
<td>0.005%</td>
</tr>
<tr>
<td>Levofloxacin 0.5% (Quixin)</td>
<td>0.005%</td>
</tr>
<tr>
<td>Moxifloxacin 0.5% (Vigamox)*</td>
<td>0.0%</td>
</tr>
<tr>
<td>Brimonidine purite 0.15% (Alphagan P)*</td>
<td>SOC (Purite)</td>
</tr>
<tr>
<td>Bimatoprost 0.03% (Lumigan)</td>
<td>0.005%</td>
</tr>
<tr>
<td>Dorzolamide 2% (Trusopt)</td>
<td>0.008%</td>
</tr>
<tr>
<td>Timolol maleate 0.5% (Timoptic)</td>
<td>0.01%</td>
</tr>
<tr>
<td>Travoprost 0.004% (Travatan)</td>
<td>0.015%</td>
</tr>
<tr>
<td>Latanoprost 0.005% (Xalatan)</td>
<td>0.02%</td>
</tr>
</tbody>
</table>
Treatment

• Immediate care
 – Prompt, copious fluid irrigation of the affected eye, preferably with sterile saline for 30 minutes
 • It is helpful to instill a topical anesthetic (proparacaine) in the eye before irrigating
 – If initial contact with patient is by phone
 • Tell patient to flush the eye with water for 20 to 30 minutes before coming to the office

• Test with litmus paper 5-10 minutes after ceasing irrigation (to allow equilibrium)
 – Near neutral (pH 6-8): may discontinue
• Sweep the conjunctival fornices for particulate matter
Treatment

• Severe Burns
 – Debride any necrotic corneal or conjunctival tissue
 • Kimura spatula
 • Alger brush
 • Diamond burr
 – Cycloplegic agent (e.g. 0.25% scopolamine)
 – Broad spectrum topical antibiotic
 • With or without pressure patch
 – Oral analgesic
 – Bandage Contact Lens
 – Consider acetazolamide if IOP is increased
 – Frequent use of preservative-free artificial tears or gel
Treatment

• Very severe burns
 – In addition to previously discussed treatment regimen...
 – May require admission to hospital to monitor IOP and corneal healing
 – Topical corticosteroid

• Follow-up
 – Evaluate patients daily
 – Monitor IOP
 • Can be a late complication in chemical burns due to blockage of the trabecular meshwork by inflammatory debris
Differential diagnoses

• Acidic Corneal Burn
• Alkali Corneal Burn
• Recurrent Corneal Erosion
• Corneal Ulcer
• Punctate Keratitis