Title: Left Homonymous Quadrantanopia secondary to retained ballistic fragments in the Right Temporal/Occipital lobe: A Case Report

Abstract: Homonymous visual field defects with corresponding ganglion cell loss on OCT are observed in cases of cerebral damage. In the following case, CT scan reveals retained bullet fragments from a gunshot wound to the skull.

I. Case History

- Patient demographics
 - 68 year old black male
- Chief complaint
 - Patient reports constant blur while reading, gradual worsening over past few months
- Ocular history
 - Cataracts OU, simple hyperopia with presbyopia OU
- Medical history
 - Unremarkable
- Medications
 - None

II. Pertinent findings

- Clinical

Initial visit: Jan 2016

- BCVA 20/20 OD, OS, OU
- EOMs: full and smooth OU
- Confrontation fields:
 - OD: superior nasal constriction
 - OS: superior temporal constriction
- Pupils: Equal, round and responsive to light OU with no relative afferent pupillary defect
- Slit lamp exam: Unremarkable OU
- Goldmann applanation tonometry:
 - OD: 17 mmHg
- OS: 16 mmHg
 - DFE
 - OD: ONH: C/D .55 (-) pallor/edema
 - OS: ONH: C/D .40 (-) pallor/edema
 - OU: Macula- flat and intact; Vessels- normal course and caliber; periphery unremarkable (-) breaks/detachments 360
 - OCT
 - RNFL analysis: Unremarkable OD, OS
 - Ganglion cell analysis: shows symmetric GC loss inferior temporal OD and GC loss inferior nasal OS
 - Humphrey visual field SS 30-2: March 2016
 - Left homonymous quadrantanopsia

2nd Visit: April 2016

- Gonioscopy: Open to PTM 360 OD; Open to ATM inferior and PTM in all other quadrants OS
- Pachymetry: OD: 557 um OS 549 um
- Patient reports at this visit that he forgot to mention that on 12/31/2015, he was involved in an incident where he was shot in the back of the head and he is unsure whether the bullet penetrated or grazed the back of his head
 - CT scan with and without contrast was ordered

- Physical
 - Patient denies any stroke related symptoms
 - Residual shoulder/neck pain from incident

- Laboratory studies
 - Chem 7 (prior to CT scan)- all within normal limits

- Radiology studies
 - CT scan reveals radio-opaque foreign body suggestive of bullet fragments, in the right temporal and occipital lobe.

III. Differential diagnosis

- Primary/leading
 - Cerebrovascular accident
 - Retained fragments of bullet
 - Traumatic brain injury
 - Brain tumor

- Others
 - Alzheimer's disease
 - Arteriovenous malformation
 - Cortical basal ganglion degeneration
 - Creutzfeldt–Jakob disease
 - Epilepsy
 - Lymphoma
 - Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
 - Metastasis of hepatocellular carcinoma
 - Multiple sclerosis
 - Neuromyelitis optica
 - Neurosurgical procedures
 - Neurosyphilis
 - Progressive multifocal leukoencephalopathy
Shaken baby syndrome
Vertebrobasilar dolichoectasia

IV. Diagnosis and discussion

- Elaborate on the condition/unique features
 - Retained bullet fragments in the temporal/occipital lobe corresponding to left homonymous quadrantanopia.
 - Studies indicate that in neurologic conditions, such as stroke where cerebral damage has occurred, corresponding ganglion cell layer and inner plexiform layer thinning can occur.
 - This case is unique in that the patient’s only notable sequelae of the retained bullet fragments was a visual field defect that he had not even noticed.

V. Treatment, management

- Treatment and response to treatment
 - Patient was evaluated by neurology following CT scan. Surgery is not indicated because the bullet fragments are not causing any major issues at this time. Continue to monitor.

- Bibliography, literature review encouraged
 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4181645/
 https://www.hindawi.com/journals/joph/2016/2394957/

VI. Conclusion

- Clinical pearls, take away points if indicated
 - Symmetric and corresponding visual field defects can be noted as ganglion cell loss on OCT.
 - It is important to realize that there are many etiologies of homonymous quadrantanopia. A detailed history, visual field and imaging can aid in proper diagnosis.