Scleral Lenses: How do you know what is best

Alan Kwok, OD, FAAO, FSLS
Tar Vaz, OD, FAAO

Please silence all mobile devices and remove items from chairs so others can sit. Unauthorized recording of this session is prohibited.
Disclosure Statement:
Nothing to disclose
Scleral Lens Indications

• Vision
 - Degenerations
 - Post Surgical
 - Dystrophies
 - Corneal Scarring

• Ocular Surface Disease
 - Severe Dry Eye
 - Neurotrophic Keratopathy
 - Limbal Stem Cell Deficiency
 - Corneal Exposure
Size Determination

- **Corneal-Scleral**
 - 12.9 -> 13.5 mm
 - Corneal bearing & Scleral touch

- **Semi-Scleral**
 - 13.6 -> 14.9 mm
 - Corneal & Scleral bearing

- **Mini-Scleral**
 - 15.0 -> 18.0 mm
 - Scleral bearing & minimal corneal clearance

- **Scleral**
 - 18.1 -> 24.0+ mm
 - Scleral bearing
Size Determination

• Mini scleral lenses are classified as less than 6mm greater than the HVID
 – Tend to be 14.0-16.5mm in diameter
Size Determination

• Smaller diameter lenses
 – less sagittal depth
 – brings vault closer to the cornea
Indications for Smaller Diameter Scleral Lenses

How complicated is the cornea?
• Early Keratoconus, Forme Fruste Keratoconus
• High cornea cylinder
• Microcornea/small HVID
• Reduced palpebral fissure aperture
 – Tarsorrhaphy
Indications for Smaller Diameter Scleral Lenses

• Scleral obstacles
 – Pinguecula, Symblepharon

• Decentration of larger diameter lens
 – Gravity
 – Low insertion of superior rectus
Indications for Smaller Diameter Scleral Lenses

- Astigmatism
- High refractive error (myopia and hyperopia)
- Aphakia
- Presbyopia
- GP intolerance
- Dryness with current lenses
Fitting Method?

• Measure HVID
• On Topography: Best fit sphere
• OCT
• Assess vault
 – Decrease until about 250-300 microns clearance of cornea, will settle back with longer wearing time
 – Must vault entire limbus
• Empirically
How Does it Land?

• Dependent on size

• Smaller diameter lens = smaller landing area
 – Watch for “stiletto heel effect”, less area to spread weight
 • As such easier to get a larger lens not to impinge

• Review common fitting guide suggestions
Advantages of Smaller Diameter Scleral Lenses

• Less intimidating
• (Perceived) Ease of insertion for patient and fitter
• Less scleral toricity to align
• (Perceived) Ease of fit/troubleshooting
Disadvantages of Smaller Diameter Scleral Lenses

• Impinge more
 – suction
• Closer to cornea and limbus
 – less comfortable
 – Don’t accommodate the more irregular corneas
Large diameter

• Criteria
 - HVID
 • Optic zone should optimally be as large as the cornea
 - Steep cone or graft
 - Proud graft
 - Ocular Surface Disease
Large diameter

• Benefits
 - Larger area of support (high vaults)
 - Larger area of coverage for OSD
 - Decreases suction
Large diameter - Case

- 57 Caucasian female
- s/p PKP OD 1998, OS 1991
- Originally fit with PROSE devices OU in 2012
Large diameter - Case

- OD: good comfort, fit, 20/20
- OS: good comfort, fit, 20/20

- Graft edema after 2-3 hours OU (observed with SLE with corresponding subjective haloes around light sources)
Large diameter - Case

Refit into:

OD
- BC: 8.2
- Power: -2.00 D
- Diam: 22.0 mm

OS
- BC: 8.2
- Power: +5.00 D
- Diam: 20.0 mm
- Air Ventilated design
Vault

- Where is it most important?
 - Limbally
 - Optimally would want clearance 360 degrees
 - Sectoral limbal touch ok?
 - Nasal and superior touch not uncommon with infero-temporal decentration
Vault – sectoral compression (case)

- 65 year old with exposure keratitis OS secondary to lagophthalmos and parietal gland resection
- Upper lid weight OS
- PROSE treatment OS 2010
- Inferior decentration from upper lid weight
- Superior Limbal compression
Limbal Compression

• M.S. 62 y.o. female with Stevens-Johnson Syndrome
• PROSE treatment 2005
• Examination in 2009 showed central neo
• Refit 2010 with higher limbal vault
• Examination in 2015 shows inactive vessels
Vault - centrally

What about central clearance?
• Relationship to corneal surface oxygen tension
 1. Certainly less oxygen at K surface with higher vaults
 • Compan et. al. 2016, Giasson, et. al. 2017
 2. But doesn’t necessarily correlate with negative corneal sequelae
 • Berkeley studies (UC Berkeley Clinical Research Center) don’t show a correlation between increased vault and corneal swelling
Vault – Case #1

- 51 year old Caucasian male
- Keratoconus OU
- h/o GP and Hybrid lens wear
- Profuse corneal haze and neovascularization
Vault – Case #1

Fit into:

OD
- BC: 7.9
- Power plano D
- Diam: 18.5 mm
- Vault : 550 um

OS
- BC: 7.3
- Power -3.25 D
- Diam: 18.5 mm
- Vault : 550 um
Case #2

• Patient N. F.: 40 year old
 - Stevens-Johnson Syndrome survivor at age 11 (amoxicillin)
 - H/O Trichiasis
 - Last visit (June 5, 2017):
 • Reports good comfort with wearing times of up to 15 hours a day
 • VA_{ccl}: 20/15 OD, 20/20+ OS
Case #2 – PROSE treatment 2008

PROSE Device OD
BC: 7.90 mm
Power: -1.50 D
Diam: 22.0 mm
Vault: > 500 um

PROSE device OS
BC: 7.90 mm
Power: -1.25 D
Diam: 22.0 mm
Vault: > 500 um
Diameter and Vault

• Smaller diameter certainly needs a lower vault
 - Small haptic landing area cannot sustain higher vaults
 - Generally smaller diameters result in a closed system, more suction
 - More suction occurs in larger diameters with less fluid exchange requiring a lower vault

• Large diameter affords more flexibility:
 - Inherent toricity will result in more fluid exchange
 - Can have wider range of vault
Vault

- Relationship between vault and corneal physiology needs to be established
- Evidence that though higher vault results in lower oxygen levels at the cornea, it is not clear how this affects physiology
- Vault should not be viewed in isolation
- Clinically, higher vaults don’t seem to have an adverse effect on the corneal physiology if fit in the correct
Conjunctival Prolapse (hooding)

- How much of a problem is it?
- How to solve it?
Toric Peripheral Curves

• Indications
 - Larger diameter
 - Compression/Impingement
 - Edge Lift
Toric Peripheral Curves

- More of an issue with larger diameters
- How much edge lift or compression is tolerable?
- Important for stabilization when incorporating front surface cylinder
- Major issue is tolerance
 - Patient education is key
Vision

• GP material provides excellent optics
• Pre-corneal fluid reservoir
 – Acts as an optical lens and fills in irregularities and correct visual aberrations
• Stable vision due to stable fit
• Re-produceable vision
Vision

• Numerous scleral lens designs available
 – Diagnostic lenses is preferable
 – Use fitting guides and consultation services

• Spherical and astigmatic corrections available

• Presbyopia lens correction lens designs
Vision-Cylinder

• Considerations
 – Flexure
 – Maximum cylinder that can be masked, may need to go larger diameter
• Add residual cylinder to front surface
 – Stabilized by toric periphery or ballasting
Residual Higher Order Aberrations

- Keratoconic patients: positive coma
- Scleral lens decentration: positive coma
- Wavefront correction
 - Review work of Yoon et al.
- Front surface eccentricity availability
- Adjusting base curve: steeper
Presbyopia and Scleral Lenses

• Many labs now offering multifocal designs
• Design review:
 – Most are center near, aspheric designs
 – Center distance designs are available
 • Role in myopia control?
Please remember to complete your session evaluations online.

Tweet about this session using the official meeting hashtag

#academy17