UNDERSTANDING LOW VISION TELESCOPES

Basic and Advanced

lan L Bailey OD, MS, DSc, FCOptom, FAAO School of Optometry University of California, Berkeley

ibailey@berkeley.edu

Applications for Telescopes in Low Vision

Observation tasks from audience

Theater Ballet Movies Sports Classroom, Public speakers TV in communal environments

General tasks

Faces
Cars
McDonalds Menu
Computer screens
Top shelf items

Mobility tasks

Traffic signals Street signs Bus numbers, airport signs Building directories, wall signs Checking traffic

Choices For the Clinician

or the Patient

Optical Factors

Magnification

Field size

Exit pupil size or entrance pupil for stars

Adjustable focus/fixed focus

Range of focusing (for near and ametropia)

Can you include astigmatic Rx ? Image quality Lens Coatings

Practical Considerations

Cost

Durability

Portability (weight/bulk/holder)

Ease of use (mechanical ergonomics)

Cosmesis (conspicuity and perceived acceptability)

Design Features

Binocular/Monocular
Hand-held /Head mounted
If head mounted Bi-optic?
Tripod/monopod
Eye-cup, Objective shroud

Lyc cup, Objective Silioud

Neck, wrist strap, handle Influenced by frequency of use

(Protracted, Intermittent, Occasional)

Course Outline

Review of basic theory

Afocal telescopes

Focal telescopes for ametropia or close focus

Apertures and Stops

Image brightness

Field of View and Field of Fixation

Vergence amplification

Practical implications Checking magnification Measuring BVP

Fitting bioptic telescopes

Emerging technologies zoom, autofocus, video

How do afocal telescopes work? Parallel rays in gives parallel rays out

Objective

A converging element (Convex lens, Concave mirror) forms a real inverted image.

Weak objective- long focal length - larger inverted image

Ocular or Eyepiece

Objective's image must be at primary focal plane of

Stronger ocular - short focal length - large image (infinity)

Bailey AAO 2016

Comparing C	Galilean and	Keplerian					
	GALILEAN	KEPLERIAN					
Optical path length Image Prisms Ocular Optical surfaces	h Short Erect (M=+ve) No Single lens 4	Long Inverted (M=-ve) Yes Makes it terrestria 2 or more lenses 10 or more					
Exit pupil Field of view Field limits Image quality	inside smaller tapered poorer	outside larger sharp outline better					

Adapting Afocal Telescopes for Ametropia

Assume object at infinity What can you change?

(a) OCULAR Place ocular against spec Rx Change ocular to include spec Rx

(b) LENGTH Change length, changes exit vergence

(c) OBJECTIVE Low Powered Lens Cap OR power change at objective changes exit vergence RARELY USED

(a) POWER CHANGE AT OCULAR

Simple and intuitive

Hold afocal telescope against own spectacle lens

Change ocular lens by adding spectacle Rx

Magnification gain = magnification of original telescope

Total magnification = (Spectacle mag) (Telescope mag)

No differences for Galilean/Keplerian

EVD = viewing distance / M_{ts}

(b) CHANGE LENGTH

Changing length, changes exiting vergence

Increasing length adds plus (HYPEROPE)

Also increase length to focus for near (adding plus)

Decreasing length adds minus (MYOPE)

FOR HYPEROPE Increase length

Re-assign PLUS power from ocular to provide Rx.

Keplerian telescope

Borrow plus from ocular Weaker ocular, longer TS

Reduced magnification

Galilean telescope

Borrow plus from ocular Stronger ocular, longer TS

Increased magnification

Be able to calculate TS length and M_{ts}

FOR MYOPE Decrease length

Re-assign MINUS power from ocular to provide Rx.

Keplerian telescope

Borrow minus from ocular Stronger ocular, shorter TS

Increased magnification

Galilean telescope

Borrow minus from ocular Weaker ocular, shorter TS

Reduced magnification

Be able to calculate TS length and M_{ts}

TELESCOPES FOR NEAR VISION

1 Afocal TS with a cap

EVD = $u/M_{ts} = f_{cap}/M_{ts}$

2. Adjust TS length of afocal telescope

EVD = $(u/M_{ts}) - f_{oc}$ EVD $\approx u/M_{ts}$ Where f_{oc} = focal length of ocular (usually 1-2 cm)

3. Afocal telescope over a high add

EVD = M_{ts} . f_{add}

Working distance = $M^2 f_{add}$ - dM_{ts}

System gives low magnification Long EVD and much longer WD

Bailey AAO 2016 3

Image Brightness and Telescopes REFLECTIONS AND ABSORPTION All telescopes reduce brightness of real objects Light loss (about 15-40%) from reflections from internal optical surfaces Keplerian more light loss More surfaces (compound eyepiece and prisms) Surface coatings reduce light loss BUT TELESCOPES ENHANCE BRIGHTNESS OF POINT SOURCES (STARS)

Imaging through telescopes

Image Smaller by M_{ts}..... and Closer by M_{ts}²
(referenced to exit pupil)

Image distance

relative to exit pupil $v = u/M_{ts}^2$ relative to ocular $v = u/M_{ts}^2 + d/M_{ts}$

Image Vergence

 $V_{xp} = M_{ts}^2 U_{obj}$ (referenced to exit pupil)

Fried's formula Emerging Vergence from Ocular $V_{oc} = M_{ts}^2 U_{obj}$ / (1- $dM_{ts}U_{obj}$)

 $V_{oc} \approx M_{ts}^2 U_{obj}$

Vergence amplification

Implications

Small change in object distance
=> large change in accom demand

Focus range of TS might be insufficient to view close

May need to place chart at 4 m and use +0.25 D lens

Weak lens on objective => large change in BVP

Vergence amplification

Implication

Risky to measure BVP of TS on lensometer

Lensometer for BVP of TS

difficult to ensure lensometer is in precise adjustment (zero vergence should enter the "lensometer eyepiece")

Any error of lensometer-eyepiece focus is amplified by $\rm M_{ts}{}^{2}$ of TS

Methods for checking telescopes

- 1 Direct Comparison (G or K)
- 2 Exit pupil measurement (G or K)
- 3 Vergence change at lensometer (G only)
- 4 Longitudinal magnification (K only)
- 5 Lateral Magnification -direct (G or K)
- 6 Lateral Magnification lensometer (G or K)

Dangle-ometry
Determining Telescope Mounting Angle
Select telescope viewing point TVP (center of hole) Must be at least half diameter plus 3mm from eyewire
Locate a fixation point at eye level Ensures horizontal line of sight
Subject tilts head to align eye,TVP and fixation point
4. Protractor with plumb line measures spectacle plane angle
When line of sight through TVP is horizontal, THEN Spectacle Frame Angle = Mounting Angle

Manufacturer's Specifications		Measured		Optical Factors			Optical Parameters				Physica	ı	Size			Field	
	Brand	ratio	Magnification	Exit Pupil	E Closest focus	Myopic Limit Hyperopic Limit	Objective diam	Ocular diam	Est.PowerObj	Est. Power Oce	Weight	Afseal Length	MaxLength	Width	Height	Fe Image Field	des
Walters	2.75x8	2.8	0.60	2.7	14	>-20+11	812	_	36100		32	39	48	22		33	12
Walters	4x12	3.9	0.87	2.9	22	>-20>+20	12:10		25100		47	47	58	30		47	12
Walters	6x16	5.9	1.07	2.7	27	>-20>+20	1612		17:100		67	69	81	31		57	10
Walters	7x25	6.8	1.20	3.0	49	>-20+5.5	21:17		15100		157	113	136	42		62	9
Walters	8x32	7.8	1.02	3.9	66	>-20+8	30/21		13/100		184	131	159	41		54	7
Speewell	2.75x8	2.7	0.67	3.1	13	>-20+12	813		37:100		74	40	54	15		37	14
Speewell	3x9	3.0	0.60	3.0	21	>-20>+20	9,11		33/101		32	44	50	24		33	11
Speewell	4x12	3.9	0.87	2.8	19	>-20>+20	1111		26100		38	46	58	29		47	12
Speewell	6x16	5.7	1.10	2.7	22	>-20>+20	16:12		17,100		81	65	88	31		58	10
Speewell	10x20	9.5	1.00	2.0	38	>-20+20	1912		11:100		86	105	136	32		53	6
Specwell	10x30	9.8	1.10	3.0	83	>-20>+20	3015		10100	_	172	148	176	42	_	57	6
Selsi	6 x18	6.0	0.91	2.2	800	>-20>+20	13:13		19:117		125	67	68	32	50	49	8
Selsi	6x15	5.6	0.83	2.6	281	-2.5+13	1512		20113		51	54	54	35	35	45	8
Selsi	8x20	7.9	1.03	2.5	29	>-20+20	20/12		13 100		79	89	120	32		54	7
Selsi	10x20	9.5	0.68	1.9	440	-15>+20 >-20+20	197 1513		11:105		125	82 57	83 59	44 37	33 37	38	4 8
Mayflower	6x15 8x30	6.0	0.83	4.0	234	>-20+20	15:13 30:15		17105		54 201	110	116	49	50	45 57	8
Mayflower	2.0°FFTS	7.4	0.72	6.8	18	>-20>+20 -16+2.3	1416		50:100	-	30	45	52	23	50	39	19
Designs fV DfV	2.0°EFTS	2.0 2.8	0.72	46	23	-16+2.3	1316		36100		30	45	55	23		43	15
Drv	4.0°EFTS	4.2	0.79	4.6	27	>-14+4	20/16		24100		42	46	81	26		43	10
Drv	5.0°EFTS	5.2	0.77	3.9	28	>-20+4	20/16		19100		42	55	81	26		44	9
DIV	6.0°EFTS	6.9	0.85	2.9	31	>-20+5	20:16		15100		35	55	81	25		45	7
Drv	7.0°EFTS	8.0	0.92	2.5	35	>-20+2.5	20/10		13100		38	58	82	26		50	6
Dry	8.0°EFTS	8.1	0.91	2.5	35	>-20+7	2011		12:101		35	67	82	25		49	6
Dry	10*EFTS	9.9	0.64	2.0	32	>-20+6.5	20/11		10100		41	61	88	26		36	4
Beecher	4x20	4.2	0.97	4.2	77	-13+11	1812		24102		116	54	57	41	47	52	12
Beecher	5.5x25	5.6	1.05	5.1	175	-11+12	2912		18103		94	40	42	33	59	55	10
Beecher	7x30	6.8	1.04	4.5	224	-9+10	3012		15101		105	38	43	35	59	55	8
Beecher	10x35	9.2	0.99	3.8	423	-20+1.8	3512		11:102		137	76	79	38	59	53	6